EOSC 510 (Data Analysis in Atmospheric, Earth
and Ocean Sciences)
This is an online graduate course on applying machine learning and
statistical methods to environmental sciences.
Course description and outline.
Textbook (optional)
Week 1 (Sept. 3-8):
Chapter 0 (Introduction and course setup)
Ch0.mp4 (video file, duration 18 min., size 38
MB), Ch0.pdf (pdf file of the slides used
in the video lecture)
Chapter 1. Correlation and regression
Week 2 (Sept. 9-15):
*Homework #1 assigned (due Sept.24).
Chapter 2. Principal component analysis (PCA) and rotated PCA
Ch2a1.mp4 (16 min., 15 MB) (Geometric approach;
eigenvector approach),
Ch2a.pdf,
Ch2_Q_solns.pdf
Ch2a2.mp4 (24 min., 22 MB) (Eigenvector approach, continued)
Ch2a3.mp4 (19 min., 18 MB) (Complex data; orthogonality)
Ch2a4.mp4 (22 min., 22 MB) (PCA applied to
real data)
Ch2b1.mp4 (18 min., 16 MB) (Scaling; degeneracy),
Ch2b.pdf
Ch2b2.mp4 (18 min., 16 MB) (Smaller
covariance matrix; mean removal)
Week 3 (Sept. 16-22):
Ch2b3.mp4 (16 min., 15 MB) (Singular value decomposition)
Ch2b4.mp4 (17 min., 16 MB) (Missing data;
significance tests)
Ch2c1.mp4 (22 min., 24 MB) (Rotated PCA),
Ch2c.pdf
Ch2c2.mp4 (24 min., 25 MB) (Varimax;
teleconnection patterns)
Ch2c3.mp4 (17 min., 16 MB) (PCA versus
Rotated PCA)
Ch2c4.mp4 (20 min., 18 MB) (PCA for vectors)
Week 4 (Sept.23-29):
Chapter 3. Canonical correlation analysis (CCA)
*Homework #2 assigned (due Oct.10).
Chapter 4. Time series
Week 5 (Sept.30-Oct.6):
Week 6 (Oct.7-Oct.13):
Chapter 5. Classification and clustering
Ch5a1.mp4 (20 min., 18 MB) (Classification:
k-nearest neighbour classifier),
Ch5a.pdf,
Ch5_Q_solns.pdf
Ch5a2.mp4 (15 min., 12 MB) (Conditional probabilities)
Ch5a3.mp4 (17 min., 16 MB) (Bayes' theorem)
Ch5a4.mp4 (21 min., 19 MB) (Logistic
regression)
Ch5b1.mp4 (14 min., 13 MB) (Clustering:
k-means clustering),
Ch5b.pdf.
Ch5b2.mp4 (25 min., 24 MB) (Hierarchical
clustering)
Ch5c.mp4 (28 min., 25 MB) (Self-organizing
maps),
Ch5c.pdf.
Week 7 (Oct.14-Oct.20):
*Homework #3 assigned (due Oct.29).
Chapter 6. Feed-forward neural network models
Week 8 (Oct.21-Oct.27):
Midterm exam: Tuesday, 22 Oct. 11:00-12:15 (Pacific time)
The exam covers course material up to the end of Week 6
(i.e. Classification and clustering).
Week 9 (Oct.28-Nov.3):
Ch6b1.mp4 (20 min., 19 MB) (MLP classifier),
Ch6b.pdf
Ch6b2.mp4 (29 min., 28 MB)
(Radial basis functions, RBF)
Ch6b3.mp4 (19 min., 18 MB) (Conditional
probability distributions)
Ch6b4.mp4 (17 min., 16 MB) (Mixture
models)
Chapter 7. Nonlinear optimization
Week 10 (Nov.4-10):
Ch7c.mp4 (16 min., 17 MB)
(Evolutionary computation and genetic algorithms)
Ch7d.mp4 (14 min., 22 MB)
(Evolutionary computation: robotic soccer)
Optional youtube videos on genetic algorithms:
GA
learns to fight (2 min.),
GA
fish (1 min.)
Chapter 8. Learning and generalization
Week 11 (Nov.11-17):
Ch8b1.mp4 (17 min., 18 MB) (Bayesian neural
networks; ensemble of models),
Ch8b.pdf
Ch8b2.mp4 (13 min., 12 MB)
(Errors of ensembles)
Ch8b3.mp4 (21 min., 20 MB)
(Errors of ensembles, continued)
Ch8b4.mp4 (13 min., 13 MB)
(Nonlinear ensemble averaging; boosting)
Ch8b5.mp4 (10 min., 10 MB)
(Linearization from time-averaging)
Ch8b6.mp4 (9 min., 9 MB)
(Regularization of linear models: ridge regression & lasso)
*Homework #4 assigned (due Dec.9).
Chapter 9. Tree-based methods
Week 12 (Nov.18-24):
Ch9b.mp4 (15 min., 15 MB) (CART applied to
ozone in Los Angeles)
Ch9c.mp4 (17 min., 17 MB) (pruning trees;
CART for clasification)
Ch9d.mp4 (10 min., 10 MB) (Random forests,
boosted trees)
Chapter 10. Forecast verification
Week 13 (Nov.25-Dec.1):
Chapter 11. Nonlinear principal component analysis (NLPCA)
Ch11a.mp4 (13 min., 14 MB)
(Auto-associative neural networks for NLPCA; open curves),
Ch11.pdf
Ch11b.mp4 (21 min., 21 MB) (NLPCA of sea
surface temperature anomalies)
Ch11c.mp4 (15 min., 15 MB) (Closed curves)
Chapter 12. Kernel methods (optional material)
Ch12a.mp4 (12 min., 12 MB)
(From neural networks to kernel methods),
Ch12.pdf
Ch12b.mp4 (17 min., 15 MB) (Advantages and
disadvantages of kernel methods)
Ch12c.mp4 (20 min., 19 MB) (Support vector
regression)
Summary
Final exam: Friday, 6 Dec. 12:00-14:30 (Pacific time)
The exam covers the course material taught over the whole term, but is
weighted more heavily towards material taught after the midterm exam.