
Time series analysis [Book, Ch.3]

4.4 Singular spectrum analysis [Book, Sect. 3.4]
So far, our PCA involves finding eigenvectors containing spatial
information. It is possible to use the PCA approach to incorporate
time information into the eigenvectors. This method is known as
singular spectrum analysis (SSA), or time-PCA (T-PCA) (Ghil
et al., 2002).

Given a time series yj = y(tj) (j = 1, . . . , n), lagged copies of the
time series are stacked to form the augmented data matrix Y,
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Y =


y1 y2 · · · yn−L+1

y2 y3 · · · yn−L+2
...

...
...

...
yL yL+1 · · · yn

 . (1)
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This matrix has the same form as the data matrix produced by L
variables, each being a time series of length n − L + 1. Y can also
be viewed as composed of its column vectors y(l), i.e.

Y ≡
[
y(1)|y(2)| · · · |y(n−L+1)

]
, (2)

where the delay coordinate vector

y(l) =


yl
yl+1
...
yl+L−1

 . (3)

The vector space spanned by y(l) is called the delay coordinate
space. The number of lags L is usually taken to be at most 1/4 of
the total record length.
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Standard PCA can be performed on Y, resulting in

y(l) = y(tl) =
∑
j

aj(tl) ej , (4)

where aj is the j th principal component (PC), a time series of length
n − L + 1, and ej is the j th eigenvector (or loading vector) of length
L. Together, aj and ej , represent the j th SSA mode.

This method is called singular spectrum analysis, as it studies the
ordered set (spectrum) of singular values (the square roots of the
eigenvalues).

SSA has become popular in the field of dynamical systems (including
chaos theory), where delay coordinates are commonly used.
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By lagging a time series, one is providing info on the first-order
differencing of the discrete time series, with the first-order difference
≈ the derivative.

Repeated lags means higher-order differences (derivatives) are
provided.

The first SSA reconstructed component (RC) is the approximation
of the original time series y(t) by the first SSA mode.

As the eigenvector e1 contains the loading over a range of lags, the
first SSA mode, i.e. a1(tl) e1, provides an estimate for the y values
over a range of lags starting from the time tl . E.g., at time tL,
estimates of y(tL) can be obtained from any one of the delay
coordinate vectors y(1), . . . , y(L).
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Each value in the reconstructed RC time series ỹ at time ti involves
averaging over the contributions at ti from the L delay coordinate
vectors which provide estimates of y at time ti .

Comparison with Fourier spectral analysis:
Unlike Fourier, SSA does not in general assume the time series to be
periodic; hence, there is no need to taper the ends of the time series
as commonly done in Fourier spectral analysis.

As the wave forms extracted from the SSA eigenvectors are not
restricted to sinusoidal shapes, the SSA can in principal capture an
anharmonic wave more efficiently than the Fourier method. However
in many cases, the SSA eigenvectors may turn out to be not be very
different from sinusoidal-shaped functions.

E.g., analyze the sawtooth wave
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Figure : Top panel shows the sawtooth wave signal used for the SSA
analysis. Middle panel shows the SSA PC1 (solid) and PC2 (dashed),
while bottom panels shows SSA PC3 (solid) and PC4 (dashed).
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Figure : Top panel shows the SSA eigenvector 1 (solid) and eigenvector
2 (dashed), while bottom panel shows eigenvector 3 (solid) and 4
(dashed) for the sawtooth wave signal.
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The first pair of SSA modes captured 61.3% of the variance, while
the second pair captured 15.4%.
With Fourier spectral analysis: the fundamental frequency band
captured 61.1%, while the first harmonic band captured 15.4% of
the variance.

In the real world, except for the seasonal cycle and tidal cycles,
signals tend not to have a precise frequency like the sawtooth wave.
E.g. El Niño-Southern Oscillation (ENSO) .

The Southern Oscillation Index (SOI) is defined as the normalized
air pressure difference between Tahiti and Darwin.

The SOI is known to have the main spectral peak at a period of
about 4-5 years. For SSA, the window L needs to be long enough to
accommodate this main spectral period; choose L = 72 months.
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The first 8 SSA eigenvectors of the monthly SOI time series (1866 –
2000) (Hsieh and Wu, 2002) (with modes 1,3,5,7 solid and modes
2,4,6,8 dashed):
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These first eight modes account for 11.0, 10.5, 9.0, 8.1, 6.4, 5.6,
3.3 and 2.0 %, respectively, of the variance.

Since the SO phenomenon does not have a precise frequency,
Fourier analysis led to energy being spread between many frequency
bands, with the strongest band accounting for only 4.0% of the
variance (vs. 11.0% of the first SSA mode).
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The four leading PCs:
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Another advantage of SSA over the Fourier approach lies in the
multivariate situation— the Fourier approach does not generalize
naturally to large multivariate datasets, whereas the SSA, based on
the PCA method, does.

4.5 Multichannel singular spectrum analysis [Book, Sect. 3.5]

There are m variables yk(tj) ≡ ykj , (k = 1, . . . ,m; j = 1, . . . , n).
The data matrix time lagged by l (l = 0, 1, 2, . . . , L− 1) is

Y(l) =

 y1,1+l · · · y1,n−L+l+1
...

. . .
...

ym,1+l · · · ym,n−L+l+1

 . (5)
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The augmented data matrix is

Y =


Y(0)

Y(1)

Y(2)
...
Y(L−1)

 , (6)

i.e.

Y =



y11 y12 · · · y1,n−L+1
...

...
...

...
ym1 ym2 · · · ym,n−L+1

...
...

...
...

y1L y1,L+1 · · · y1n
...

...
...

...
ymL ym,L+1 · · · ymn


. (7)
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PCA can again be applied to the augmented data matrix Y to get
the SSA modes.

Q3: (a) What is the dimension of the augmented data matrix Y
with lag L, where the original data matrix has m variables and n
time observations?
(b) If your spatial domain has 1◦lat.×1◦lon. gridded data covering
50◦ of latitude and 130◦ of longitude, and you have monthly
observations for 60 years, what is the dimension of your matrix Y
with lag L = 72 months?
———

If more than one variable, the method is called the space-time PCA
(ST-PCA) , or multichannel singular spectrum analysis (MSSA). We
will, for brevity, use the term SSA to denote both the univariate and
the multivariate cases.
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The term extended empirical orthogonal function (EEOF) analysis is
also used in the literature, especially when the number of lags (L) is
small.

So far, we have assumed the time series was lagged one time step at
a time. To save computational time, larger lag intervals can be
used, i.e. lags can be taken over several time steps at a time.

E.g. SSA analysis of the tropical Pacific monthly sea surface
temperature anomalies (SSTA) data from 1950-2000, where the
climatological seasonal cycle and the linear trend have been removed
from the SST data to give the SSTA. A window of 73 months was
chosen (Hsieh and Wu, 2002).
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With a lag interval of 3 months, the original plus 24 lagged copies of
the SSTA data formed the augmented SSTA dataset. (Note that if
a lag interval of 1 month were used instead, then to cover the
window of 73 months, the original plus 72 copies of the SSTA data
would have produced a much bigger augmented data matrix).

The first six SSA modes respectively explain 12.4%, 11.7%, 7.1%,
6.7%, 5.4%, 4.4% of the total variance of the augmented dataset.
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Figure: The SSA modes 1-6 for the tropical Pacific SSTA shown in
(a)-(f), respectively. The contour plots display the space-time
eigenvectors (loading patterns), showing the SSTA along the
equator as a function of the lag. Solid contours indicate positive
anomalies and dashed contours, negative anomalies, with the zero
contour indicated by the thick solid curve. In a separate panel
beneath each contour plot, the principal component (PC) of each
SSA mode is also plotted as a time series.

The first two modes have space-time eigenvectors (i.e. loading
patterns) showing an oscillatory time scale of about 48 months,
comparable to the ENSO time scale, with the mode 1 anomaly
pattern occurring about 12 months before a very similar mode 2
pattern, i.e. the two patterns are in quadrature. The PC time series
also show similar time scales for modes 1 and 2. Modes 3 and 5
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show longer time scale fluctuations, while modes 4 and 6 show
shorter time scale fluctuations— around the 30-month time scale.

References:

Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D.,
Mann, M. E., Robertson, A. W., Saunders, A., Tian, Y., Varadi,
F., and Yiou, P. (2002). Advanced spectral methods for climatic
time series. Reviews of Geophysics, 40. 1003, DOI: 10.1029/
2000RG000092.

Hsieh, W. W. and Wu, A. (2002). Nonlinear multichannel singular
spectrum analysis of the tropical Pacific climate variability using a
neural network approach. Journal of Geophysical Research,
107(C7). DOI: 10.1029/2001JC000957.

20 / 20


