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SUMMARY

This paper studies how time—averaging of observations can affect the detectable nonlinear empirical
relations in the data. The example used is the simulation of the precipitation rate as a daily, weekly,
and monthly variable. The feedforward Neural Network (NN) model is employed to simulate the precip-
itation rate. A measure of the nonlinearity of the NN relation is introduced and is used to calculate the
nonlinearity of the NNs. It is found that the use of data averaged over periods longer than the inherent
time scale of the involved variables can result in a dramatic weakening of the detected nonlinearity. A
suggested theoretical explanation asserts that averaging of independent samples of the data records yields
distributions approaching the multi—variate normal, in which case the relations among the variables are
closer to linear.
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1. INTRODUCTION

Physical processes in the ocean and atmosphere are often nonlinear. Some relation-
ships between the physical variables are known and are studied using the dynamical
governing equations. In other cases, the relationships are not very well understood but
can be estimated by statistical models developed empirically from observations. Virtually
all these empirical studies use digitized data and this involves an averaging of the true
continuous values. It is common to further average data in space and in time to reduce
the size of datasets and smooth out noise. For example, climatological studies almost
always use monthly means of observed data, and statistical weather analyses usually use
daily averaged values.

Due to its nonlinear modeling capability, Neural Network (NN) has become the tool
of choice for many studies where a nonlinear relationship is expected. In the last decade,
NN models have been applied as nonlinear multiple regression (NMR) to climatologi-
cal variables (Tangang et al. 1998a,1998b; Tangang et al. 1997; Hastenrath et al. 1995;
Navone and Ceccatto 1994), and weather related phenomena (Gardner and Dorling 1999;
Kuligowski and Barros 1998a,1998b; Marzban and Stumpf 1996; McCann 1992). There
have also been a few attempts to use NN models for the analysis of climatological systems
(Tangang et al. 1998b; Grieger and Latif 1994) and for climate downscaling (Hewitson
and Crane 1996).

NN prediction and analysis of climatological data have been at the focus of our
research efforts in the last few years. Several NMR prediction problems on the climato-
logical time scale at mid—latitudes were formulated and studied using the NNs developed
by the strategies of Yuval (2000) and Yuval (2001). Examples are the prediction of the
Pacific North American pattern, or the prediction of temperatures over land using the
Pacific sea surface temperature (SST) as a predictor. Special interest is in studying the
relationship between the 500mb geopotential heights and the temperatures over Canada
at lead times of a season or longer. This is a problem of practical interest which was stud-
ied by Shabbar and Barnston (1996) using the Canonical Correlation Analysis (CCA)
method. They found that the Pacific SST was more important than the 500mb geopoten-
tial data for temperature prediction. The CCA is a linear method and could not model
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the expected nonlinear relation between the 500mb heights and the temperature. There
was hope that this nonlinearity will be captured by the NNs and enable improved pre-
dictions. It was puzzling to find out that no statistically significant predictive advantage
of NMR over linear methods could be detected in this prediction problem, nor in the
prediction of other mid—latitude variables on the monthly or seasonal time scale. The
failure of our attempts to improve upon results achieved using linear methods, in prob-
lems that involved what we believed to be nonlinear relationships, pointed out to some
shortcoming in the investigations and prompted a study to find out the reasons.

This paper offers a possible explanation by suggesting that averaging observed data
over periods that are longer than the inherent time scale of the involved physical phenom-
ena reduces the nonlinearity of the estimated empirical relationships. The Appendix pro-
vides theoretical support to this idea by evoking the central limit theorem. We developed
a methodology to quantitatively calculate the nonlinearity of NN empirical relationships
to show that reduction in their nonlinearity may indeed take place as the time—averaging
window increases, and that this effect can be very significant.

To demonstrate our claim, precipitation rate at various locations is simulated. The
generation of precipitation involves vertical lifting, latent heat release, phase changes,
and many other physical processes that are inherently nonlinear and thus the connection
between the precipitation rate and other physical variables is expected to serve as a good
example of a nonlinear relationship. This reasoning lead many studies (e.g., Hall et al.
1999, Koizumi 1999, Kuligowski and Barros 1998a,1998b; Navone and Ceccatto; 1994;
Hastenrath et al. 1995) to try applying NNs to prediction of precipitation rates at various
time scales.

The NN simulation in this paper is by models trained using the methodologies of
Yuval (2001) and Yuval (2000). The original daily predictor and predictand data are
weekly and monthly averaged. NN models are trained to simulate the precipitation at
various geographical locations using the daily, weekly, and monthly data. The nonlinearity
of the resultant NN models is calculated and presented.

The paper begins with a section describing the data used and defining the simulation
problem. It is followed by a section describing the feedforward NN model. The next section
develops the measure of the nonlinearity of the feedforward NN. Examples of nonlinearity
in observed data relationships that is weakened or modified as the time—averaging window
lengthens are shown in the results section.

2. DATA AND THE SIMULATION PROBLEM

The data in this study are from the NCEP/NCAR reanalysis project (Kalnay et al.
1996) that uses a state of the art global assimilation model to create a comprehensive
dataset that is as complete as possible. The output variables are given on a 2.5° x 2.5°
grid. Forty—one years of mean daily data (1959-1999), totaling 14975 daily time points
were available. NCEP precipitation is purely model based so the NN models only simulate
the dynamic model that generates it. This should not affect the conclusions of the paper
and their relevance to studies using real data.

The predictand is the precipitation rate (kg m~2 s~!) at various locations on earth.
The predictors were chosen among the available physical variables, with no missing data,
that can be measured on the surface or by satellites. The attempt here is to simulate
the predictand at zero lead time (6t = 0), and thus the concurrent predictor variables are
used as predictors. To simulate precipitation at each location, only the predictor variables
at that location were used. A better simulation can result from the use of predictors of



past times and of locations in the vicinity of the predictand, but this was not attempted
here in order to keep the example simple.

The predictor variables are: 1000mb geopotential height (gpm), precipitable water
(kg m~2), surface pressure (Pa), horizontal winds at 10 meters above the surface (m s~ 1),
downwards solar radiation flux at the surface (W m~?2), latent heat flux at the surface
(W m~2), net long wave radiation flux at the surface (W m~2), sensible heat flux at the
surface (W m~2), upwards long wave radiation flux at the surface (W m~2), upwards
long wave radiation flux at top of the atmosphere (W m~2), and upwards short wave
radiation flux at top of the atmosphere (W m~2).

The NCEP data provide complete global coverage. Several locations in the north-
ern hemisphere with different types of climate were chosen for the examples. The loca-
tions are off the coast of British Columbia, Canada (50°N, 130°W), in the Middle East
(33°N, 35°E), and northeastern China (50°N, 123°E).

The original daily data were weekly and monthly averaged. The weekly averaging was
carried out by taking the mean predictor values of the seven days periods starting from
the first day. The monthly averages are means of predictor values in the true calendar
months. The predictand is the corresponding total precipitation (i.e. weekly and monthly
precipitation amounts). In all cases, the predictors series were normalized before training
by the means of their absolute values as the raw data values encompass many orders of
magnitude. The lengths of the daily, weekly, and monthly data records are 14975, 2139,
and 492 data points correspondingly. The records were divided into two equal parts,
the first was used to develop the models, and the second for testing and calculating the
nonlinearity.

3. TWO-LAYER FEEDFORWARD NEURAL NETWORK

An NN connects between some input and a desired output. In applications in the
ocean and atmospheric sciences, the input is composed of the predictor variables, and the
output, the predictands. In all the examples given in this paper, the NN’s output consists
of only one predictand. The type of NN considered here is the two-layer feedforward
NN. This type of NN has been very successful for practical applications in various fields
(Hsieh and Tang 1998) and is the most commonly used. The special class of two-layer
feedforward NN is the least complicated class that can perform sufficiently well for the
purposes of prediction and analysis of oceanic and atmospheric data.

Consider a set of predictors P (¢ = f) and a predictand T'(t =  + 6t). The independent
variable ¢ is time in most applications, and we consider now predictors and a predictand
at a specific time point ¢. In this paper, 6t is set to zero to simulate the predictand
with concurrent predictors. The two-layer NN connecting P(f) and T'(f + 6t) takes the
following form

=F> WP} +b), j=1,..,N (1)
T(t+6t) = ZWh+b i=1,., M (2)

where P;(t) are the elements of P( t), W,J are elements of W, an M x N matrix, b;
elements of the M x 1 vector b W elements of W a1 x M vector, and b is a scalar.
In the NN terminology, the elements of W and W are called the weights. The
elements of b and b, are called the biases. The mathematical manipulation in Eq. (1)
is referred to as the first, or hidden, layer of the NN. M, the number of rows of V/‘\’, is



usually called the number of hidden neurons. The function F' is the hidden layer transfer
function, usually chosen to be the hyperbolic tangent. Equation (2) forms the second, or
linear output layer of the NN. The hidden layer can perform manipulations of any degree
of nonlinearity but, due to the hyperbolic tangent range, quashes the values into [-1, 1].
The output layer linearly scales the products of the hidden layer to any desired value.
Given a set of predictors P, the simulation power and flexibility of the NN depends on
the number of hidden neurons M which controls the total number of model parameter
Q=(N+2)M +1.

Another, simple way to describe the relation of Eqgs. (1) and (2) is by the matrix
form

T(i+6t) = FIW,P()] =W (F (WP +b)) +b 3)

where W is a vector containing all the NN weights and biases. Cast in the form of Eq. (3),
it is clear that the NN is just a nonlinear operator F[W, P(¢)] manipulating the input
P(#) through some simple matrix multiplications that results in the output T(t + 5t)

The actual values of the model parameters, i.e. the elements of W b W and b in
Egs. (1)-(2) or Eq. (3), are found using a dataset [{P(¢;), T'(t; + 6t)}, i=1,2,---, L],
where L is the number of data points. An optimization problem is formulated by con-
structing a cost function that measures the mean squared error between the model output
and the observed data. (In certain problems, the cost function should also include addi-
tional constraints). A nonlinear search algorithm is employed in order to find the model
parameters that minimize the cost function. In NN terminology, this process is called
training. Detailed descriptions of NN training and considerations regarding its imple-
mentation are given in text books like Bishop (1995) and Ripley (1996).

An NN study must start with decisions about the NN models architecture, and about
the type of NN training to be used in order to recover the optimal NN model parameters.
It was verified that for all the examples given in this paper, using one hidden neuron
(M =11in Eq. (2)) was sufficient to adequately simulate the relationship. That results in
total of 15 model parameters in each of the models. Given that the number of independent
examples in each dataset was more than an order of magnitude larger, the NN trainings
in all cases can safely be considered overdetermined and resulted in unique NN models.
The MATLAB Levenberg-Marquardt routine (Demuth and Beale 1998) was used to train
the models. In all cases, the first half of the dataset was used for training the model and
the second half was used for independent testing of the results.

4. NONLINEARITY OF FEEDFORWARD NEURAL NETWORK MODEL

The main advantage of the NN as a modeling tool is the ability to simulate any
relationship with no need for prior assumptions about its degree of nonlinearity. If the NN
simulation generalizes a relationship to a satisfactory level, then the degree of nonlinearity
of the NN operator can serve as a clue while attempting to model this relationship from
basic physical principles. In this section, the meaning of the statement that an NN is a
nonlinear model is explored and a method is set forth for a simple estimation of that
nonlinearity. The nonlinearity measure is a function of the independent variable, usually
time, and thus can serve as an analysis tool to study the temporal variability in the
nonlinearity of the data relationships.

(a) Definition of the nonlinearity measure of a feedforward NN



By definition, an operator F is nonlinear if, and only if,
.7:[(111)1 + asz] ;é alf[Pl] =+ a2.7-'[P2] . (4)

To satisfy the above condition, F must possess a non—zero derivative with respect to P
of order higher than the first. That means that in the Taylor expansion

1
F[P + 0P] = F[P] + F'[P)6P + - - - + W}'“[P]((SP)n + R, (6P), (5)
at least one of the higher—than—first order terms must be different from zero. Note that
the derivatives in Eq. (5) are directional derivatives in the direction JP.
Equation (5) facilitates a simple test to assess the nonlinearity of an operator. Define
the ratio FIP] + F[P)SP
+
R=—ific—- 6
F[P + 6P] (6)

For a linear F[P] all the higher order terms in Eq. (5) equal zero and R =1. For a
nonlinear F[P], some of the higher order terms must exist and R # 1. This nonlinearity
test follows the idea of estimating a trust region around a point in which a function can
be considered linear. Construction of trust regions was studied in the context of designing
Newton method algorithms for nonlinear optimization. More information can be found
in numerical optimization texts (e.g., Dennis and Schnabel 1996; Kelley 1999; Nocedal
and Wright 1999).

(b) Practical considerations for calculating R values

The choice of the perturbation éP is an important issue for practical purposes. A
reasonable choice is
0P =P, (7)

where v is some small value. This means that 6P is a small step in the input space in
the direction of the input. The choice of perturbation in Eq. (7) renders R a measure of
the nonlinearity of the NN in the direction of P. Other options exist and can serve for
different purposes. An important example is

P=vP.xe (8)

where e is a vector whose elements equal zero excepting the ith element that equals
one, and .x is the vector multiply operation (Hadamard element by element product).
Using the perturbation in Eq. (8), the value of R is a measure of the nonlinearity of the
predictand in the direction of the ith predictor. This measure can be used to study the
nonlinearity of the connection between the predictand and a specific predictor.

The magnitude of JP is controlled by the value of v. A remaining question is what
this value should be. The Taylor expansion of Eq. (5) is valid only for 6P which is small
enough such that the R, (0P) term is negligible. On the other hand, choosing very small
values for §P while evaluating R, might result in very small values for the high order terms
and R very close to unity. In that case it is not clear whether the result points to actual
lack of nonlinearity in the relationship, or is an artifact of an excessively small choice for
the value of v. A similar problem is encountered while estimating the nonlinearity for
the construction of a suitable trust region. Various solutions were suggested, all of whom
rely on some experimentation to arrive at an arbitrary small tolerance value rendering a
perturbation that is considered small enough. For the purpose of this paper, a suitable



value for v is chosen by the following considerations. An observation noted in all the
cases that we studied (including many not described in this paper), is that the pattern of
‘R as a function of ¢ is almost identical in form for all v values below a certain limit, i.e.,
R(v, ti)/R(v, t;) =~ Constant for any (i, j) and any v < Lim, where Lim is some limit
found experimentally. This means that the conclusions about the nonlinearity at a time
point, relative to the nonlinearity in other points, using v — 0 are similar to those using
any other choice of v < Lim. Thus any value of v < Lim is an appropriate choice and
we chose one that resulted in most of the R values in our examples falling in the range
[—5, 5]. Obviously this consideration can be applied only for comparisons of nonlinearity
of models F defined on a space spanned by the same predictors P. A comparison between
the nonlinearity of models fed by different predictor variables must be ruled out unless
some appropriate normalization of R is found. Such a comparison is not needed for this
paper.

5. RESuLTS
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Figure 1. Precipitation patterns in locations at (a) British Columbia coast (50° N, 130°W) (b) Middle
East (33°N, 35°FE) (c) northeastern China (50°N, 123°E). Shown is the observed daily precipitation
during 1979 (the first full year of the testing record).

Figure la provides a one—year record of the observed daily precipitation at the
location along the British Columbia coast. It shows the typical pattern of year round
precipitation, with higher and more frequent accumulations during the winter months.
The upper panels of Figure 2 show scatter plots of the NN simulation of the daily, weekly,
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Figure 2. Results from the location off the British Columbia coast. The upper panels show scatter

plots of NN simulation of the daily, weekly, and monthly precipitation as a function of the observed

values. The diagonal line is the perfect one-to-one relationship. The weekly and monthly precipitation

amounts were normalized to mm/day units. The middle panels show the density distribution histograms

of precipitation amounts and the lower panels the corresponding plots of R values. The histograms are

counts of the number of occurrences of precipitation and R values that fall within the limits of equally
spaced bins dividing the value ranges.

and monthly precipitation at that location. The correlation and root mean square error
(RMSE) skills of the simulations, calculated for the testing period (second half of the
record), are given in Table 1. The upper panels of Fig. 2 show a clear trend of reduced
scattering of the simulations around the one-to-one line, implying relative improvement
of simulations with increasing length of the time—averaging window. This improvement
is reflected in the increased correlation and decreased RMSE.

Histograms of the R nonlinearity values are shown in the lower panels of Fig. 2. The
distribution of R values calculated for the daily data is wide and strongly skewed towards



left (lower R values). The highest density is around R = 0.7. The corresponding distribu-
tion for the weekly data is densest around R = 1.0 (i.e., linear) and is not as wide. The R
values calculated for the monthly data relationship are all very close to unity. These re-
sults show a clear trend of diminished nonlinearity with increasing time-averaging window
in the simulated relationship between the predictors and the predictand. Corroborating
this conclusion is the comparison in Table 1 between the correlation and RMSE skills
of the NN and linear regression simulations. The significant advantage of the NN in the
daily data simulation (assumed to be due to its nonlinear capability) is decreased in the
weekly data simulation, and is almost non existent in the monthly data. The actual time
series of simulated monthly precipitation by the NN and the linear regression (not shown)
are hardly distinguishable. The similarity of the NN and linear regression simulations of
the monthly data, and their almost identical correlation and RMSE skills suggest that
the NN has degenerated in this case to linear regression.

TABLE 1. Correlation (CC) and RMSE skills of precipitation simulations by NN and linear regression

(LR). The skills were calculated on the second halves of the data records. The simulating models were

developed using the first halves. The NN/LR columns give the ratio between the corresponding NN and

regression skills. Note the clear trend of decrease in this ratio as the time-averaging window increases.
This decrease is not as significant in the northeastern China location.

Location Skills Daily Weekly Monthly
NN LR NN/LR | NN LR NN/LR | NN LR NN/LR

British Columbia CC 0.80 0.73 1.10 0.88 0.86 1.02 0.93 0.93 1.00
RMSE | 0.93 1.06 0.88 0.44 0.48 0.92 0.24 0.25 0.96

Middle East CcC 0.86 0.76 1.13 0.90 0.88 1.02 0.94 0.93 1.01
RMSE | 1.40 1.80 0.78 0.67 0.76 0.88 0.38 0.40 0.95

Northeast China CC 0.81 0.73 1.11 0.91 0.88 1.03 0.97 0.96 1.01
RMSE | 1.37 1.60 0.86 0.62  0.69 0.90 0.32 0.35 0.91

Our interpretation of these experimental results is based on the modification that
takes place in the forms of the the predictors and predictand data distributions as a
result of the weekly and monthly averaging. The middle panels of Fig. 2 show the dis-
tributions of daily, weekly, and monthly simulated precipitation values. The daily data
distribution is one-sided and long—tailed. The distribution of the weekly and monthly
means are less one-sided, and are denser at increasingly higher values. Although far
from being normal-like, it seems that the weekly and monthly distributions are getting
closer to the normal distribution. This is in agreement with the central limit theorem
that states that the sampling distribution of the means of a variable with an arbitrary
distribution approaches the normal distribution. The weekly and monthly means of the
predictors (not shown) exhibit a trend similar to that of the predictand. As discussed
in the Appendix, relation between normally distributed variables is linear and thus the
predictor—predictand relations tend to get closer to linear when the data are averaged
and their distributions closer to normal.

Both predictors and predictand data are serially correlated. In the case of the British
Columbia coast weather, the dominant autocorrelation is about 3-5 days. Thus taking
both weekly and monthly means is expected to significantly average the data, strongly
modify their distribution, and significantly lower the nonlinearity in the relationship
between the predictors and the predictand.

A one year time series of precipitation in the location in the Middle East is given in
Fig. 1b. Precipitation in this region is usually associated with winter synoptic troughs.
The summer and autumn are almost totally dry. The upper panels of Fig. 3 show the
scatter plots of NN simulations. The lower panels show the calculated nonlinearities.
Similar to the results in the British Columbia coast, there is a general tendency of de-
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Figure 3. Similar to Fig. 2 but for the location in the Middle East.

creasing scatter in the upper plots, and improvement of the simulation skills in Table
1, with increasing length of the time—averaging window. This trend is associated with a
narrowing of the R histograms in the lower panels of the figure which means a decrease
of the nonlinearity.

The nonlinearity reduction is less noticeable in the weekly data simulation, where
the R distribution is similar in shape but slightly more narrow than that of the daily data
simulation. The nonlinearity in the monthly data relationship is clearly diminished but
not as significantly as in the British Columbia location. The impact of time-averaging
of data in this location is different than that in the British Columbia Coast. This can be
explained by examining the distributions of the daily, weekly, and monthly precipitation
shown in the middle panels of Fig. 3. The weekly data distribution is slightly wider but
still one—sided and long-tailed. The monthly data distribution is narrower but still very



strongly skewed to the right. As can be seen in Fig. 1b, the precipitation pattern in the
Middle East location includes many completely dry periods intercepted (in the winter) by
sporadic precipitation events about week long. Weekly averaging the data in this location
is thus not always significant, and as a result the change in the nonlinearity is not as
large.
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Figure 4. Similar to Fig. 2 but for the location in northeastern China.

The last example is of precipitation simulation at a location in northeastern China,
where most of the precipitation occurs in the summer but occasional rain is possible in
any season. Precipitation events at this location are very variable in terms of length and
intensity. The scatter plots in the upper panels of Fig. 4 reveal a trend, similar to that
in the two other locations, of decreasing scatter with increasing length of time—averaging
window. The change in the scattering seem to be less substantial than in the first two
examples. The comparison of the NN and linear regression simulation skills in Table 1
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show that in this location the reduction in the advantage of the NN simulation is not as
significant. This suggests that less reduction in the nonlinearity with averaging occurs in
the predictor—predictand relationship at this location.

Examination of the R histograms in the lower panels of Fig. 4 reveals that indeed
the reduction in the nonlinearity, especially in the monthly data, is not as strong as in
the corresponding plots in Figs. 2 and 3. This is in agreement with the modification
occurring in the precipitation distributions shown in the middle panels of Fig. 4. The
weekly and monthly distributions seem to be less affected by the averaging compared to
the corresponding distributions of data in the other locations.

An interesting point is the change in the general shape of the distribution of nonlin-
earities in the monthly data relationship at the northeastern China location. The daily
and weekly ones are strongly skewed to the left while that of the monthly data is strongly
skewed to the right. That means a change in the sign of the sum of high order terms in the
Taylor expansion (Eq. (5)), and probably a radical change in the predictand-predictor
relationship. A possible explanation does not readily come to mind but it might be re-
lated to the large variability in the length and intensity of precipitation events at that
location, and its impact on the averaging process. The data distributions might not have
been affected much but the effect of averaging on the predictand might have been dif-
ferent than on the predictors. The tendency to modify the distributions towards normal
is not as strong, reflected by smaller reduction in the nonlinearity, but the nature of the
predictor—predictand relation might have been affected, resulting in different nonlinearity
patterns.

6. CONCLUSIONS

This study was prompted by the realization that using monthly means of physical
variables, it is hard to detect nonlinearity in NN climatological studies. Here we define a
quantitative measure of the nonlinearity of an NN. Using as an example the simulation of
precipitation, it is shown that the nonlinearity of a relationship generally decreases as the
data time-averaging window lengthens. The significance of the change in the nonlinearity
depends on the length of the time—averaging windows, and the time scales on which the
predictors and the predictand vary. The nonlinearity of a relationship between variables
like the 500mb geopotential height and temperature, that vary on the daily or hourly
time scale, cannot be captured while using data given as monthly means of the variables.
Nonlinearities between such variables on the climatological time scale cannot be ruled
out, but may not be detectable from the short and noisy data records.

The results demonstrated here are similar to those found in many other simulation
and prediction problems that we studied. Their implications for future empirical studies
are important. The earth sciences community is increasingly becoming aware of the need
to use nonlinear statistical tools in data analysis. It is important to bear in mind that the
advantages of using these tools cannot be realized unless the data are properly sampled.
Using data averaged over periods longer than the inherent time scales of the predictors
or predictands, the nonlinearity in their relationships are smoothed out. The skills of
the simulation or prediction at that time scale might be misleadingly high but they
only reflect the strength of the linear relationship. No wonder that advantages of NNs
were convincingly demonstrated only by researchers who used properly sampled data.
Good examples are the results achieved by Gardner and Dorling (1999) who used hourly
data to predict nitrogen oxides pollution, and Kuligowski and Barros (1998a) who used
six—hourly data for precipitation forecasts.
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Using NN and other nonlinear statistical methods is usually not as straightforward
as using traditional linear methods. In particular, the short length of the climate records
form a formidable problem (Yuval 2000; Hsieh and Tang 1998). Before attempting a
study involving a nonlinear empirical method, it must be considered whether the data
enable nonlinear relationships that the method can potentially find. If this is not the
case, a simpler linear method should be applied. Data availability almost always dictates
some compromises, however, their implications should be kept in mind. For example,
precipitation processes usually develop on a time scale that is shorter than one day. Thus
we are aware that the results shown here could have probably been more dramatic using
hourly data. We believe that they are convincing enough as they are.

The nonlinearity measure introduced in this paper proved to be a useful tool to in-
vestigate the failure of NN to improve the prediction and simulation of some relationships
assumed to be nonlinear. This measure should be considered as an additional analysis
tool also for other purposes. Provided that the NN prediction or simulation is adequate,
its nonlinearity, and the variation of this nonlinearity with time, can provide hints about
the relationship captured by the NN. In most cases, NNs are applied when the physical
problem at hand is not well understood; their nonlinearity should be born in mind while
trying to arrive at a proper analytical relationship developed from basic physical laws.
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APPENDIX

For simplicity, consider the relation between two variables z and y. If y = f(x) is
a nonlinear function, then even if z is a normally distributed random variable, y will
in general not have a normal distribution. Now consider the effects of time-averaging
on the (z,y) data. The bivariate central limit theorem (Bickel and Doksum, 1977,
Theorem 1.4.3) says that if (z1,41),..., (n,yn) are independent and identically dis-
tributed random vectors with finite second moments, then (X,Y’), obtained from av-
eraging (x1,41), - - -, (Tn, Yn), will, as n — oo, approach a bivariate normal distribution
N(u1, pa, 03,03, p), where pu; and ps are the means of X and Y, respectively, o7 and o3
are the corresponding variances, and p the correlation between X and Y. The conditional
probability distribution of Y given X is also a normal distribution (Bickel and Doksum,
1977, Theorem 1.4.2), with an expectation

E[Y] = ps + (X — p)poz/o;. (A1)

This linear relation explains why time-averaging tends to linearize the relationship be-
tween the two variables. The bivariate theorems readily generalize to the multi—variate
case concerning this paper.

In the case of a relationship between variable series with autocorrelations longer than
the time-averaging window, the averaged values are not independent and the bivariate
central limit theorem does not apply. For example, variations in physical variables related
to the El Nifio Southern Oscillation (ENSO) phenomenon can be considered as random
variables where each ENSO event is one realization. The length of autocorrelation of
ENSO time series is about one year. Thus, any ENSO-related detectable nonlinearity
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will not be diminished by monthly averaging of daily observations. However, mid-latitude
weather variables have an autocorrelation length of a few days. Monthly averaging their
daily observations will tend to modify their distribution towards multi-variate normal,
and their mutual relationships towards linear.
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