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Preface

Machine learning is a major subfield in computational intelligence (also
called artificial intelligence). Its main objective is to use computational meth-
ods to extract information from data. Machine learning has a wide spectrum of
applications including handwriting and speech recognition, object recognition
in computer vision, robotics and computer games, natural language processing,
brain-machine interfaces, medical diagnosis, DNA classification, search engines,
spam and fraud detection, and stock market analysis. Neural network methods,
generally regarded as forming the first wave of breakthrough in machine learn-
ing, became popular in the late 1980s, while kernel methods arrived in a second
wave in the second half of the 1990s.

In the 1990s, machine learning methods began to infiltrate the environmental
sciences. Today, they are no longer an exotic fringe species, since their presence
is ubiquitous in the environmental sciences, as illustrated by the lengthy bibli-
ography of this book. They are heavily used in satellite data processing, in gen-
eral circulation models (GCM) for emulating physics, in the post-processing of
GCM model outputs, in weather and climate prediction, air quality forecasting,
analysis and modelling of environmental data, oceanographic and hydrological
forecasting, ecological modelling, and in the monitoring of snow, ice and forests,
etc.

This book presents machine learning methods (mainly neural network and
kernel methods) and their applications in the environmental sciences, written
at a level suitable for beginning graduate students and advanced undergradu-
ates. It is also aimed at researchers and practitioners in environmental sciences,
who having been intrigued by exotic terms like neural networks, support vector
machines, self-organizing maps, evolutionary computation, etc., are motivated
to learn more about these new methods and to use them in his/her own work.
The reader is assumed to know multivariate calculus, linear algebra and basic
probability.

Chapters 1-3, intended mainly as background material for students, cover
the standard statistical methods used in environmental sciences. The machine
learning methods of later chapters provide powerful nonlinear generalizations for
many of these standard linear statistical methods. The reader already familiar
with the background material of Chapters 1-3 can start directly with Chapter
4, which introduces neural network methods. While Chapter 5 is a relatively
technical chapter on nonlinear optimization algorithms, Chapter 6 on learning
and generalization is essential to the proper use of machine learning methods —
in particular, Section 6.10 explains why a nonlinear machine learning method
often outperforms a linear method in weather applications but fails to do so in
climate applications. Kernel methods are introduced in Chapter 7. Chapter
8 covers nonlinear classification, Chapter 9, nonlinear regression, Chapter 10,
nonlinear principal component analysis, and Chapter 11, nonlinear canonical
correlation analysis. Chapter 12 broadly surveys the applications of machine
learning methods in the environmental sciences (remote sensing, atmospheric
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science, oceanography, hydrology, ecology, etc.). For exercises, the student could
test the methods on data from their own area or from some of the web sites listed
in Appendix A. Codes for many machine learning methods are also available
from sites listed in Appendix A.

On a personal note, writing this book has been both exhilarating and gru-
elling. When I first became intrigued by neural networks through discussions
with Dr. Benyang Tang in 1992, I recognized that the new machine learning
methods would have major impact on the environmental sciences. However, 1
also realized that I had a steep learning curve ahead of me, as my background
training was in physics, mathematics and environmental sciences, but not in
statistics nor computer science. By the late 1990s I became convinced that the
best way for me to learn more about machine learning was to write a book.
What I thought would take a couple of years turned into a marathon of over
eight years, as I desperately tried to keep pace with a rapidly expanding research
field. T managed to limp pass the finish line in pain, as repetitive strain injury
from overusage of keyboard and mouse struck in the final months of intensive
writing!

I have been fortunate in having supervised numerous talented graduate stu-
dents, post-doctoral fellows and research associates, many of whom taught me
far more than I taught them. I received helpful editorial assistance from the
staff at the Cambridge University Press and from Max Ng. I am grateful for the
support from my two university departments (Earth and Ocean Sciences, and
Physics and Astronomy), the Peter Wall Institute of Advanced Studies, the Nat-
ural Sciences and Engineering Research Council of Canada and the Canadian
Foundation for Climate and Atmospheric Sciences.

Without the loving support from my family (my wife Jean and my daughters,
Teresa and Serena), and the strong educational roots planted decades ago by
my parents and my teachers, I could not have written this book.

Notation used in this book

In general, vectors are denoted by lower case bold letters (e.g. v), matrices by
upper case bold letters (e.g. A) and scalar variables by italics (e.g. z or J).
A column vector is denoted by v, while its transpose v is a row vector, i.e.
vT = (vi,v9,... ,v,) and v = (v1, 2, ... ,v,)T, and the inner or dot product of
two vectors a-b = aTh = bTa. The elements of a matrix A is written as A;;
or (A);;. The probability for discrete variables is denoted by the upper case P,
whereas the probability density for continuous variables is denoted by the lower
case p. The expectation is denoted by E[...] or {...). The natural logarithm is
denoted by In or log.

Acronyms:

AO = Arctic Oscillation
BNN = Bayesian neural network
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CART = classification and regression tree

CCA = canonical correlation analysis

CDN = conditional density network

EC = evolutionary compution

ENSO = El Nino-Southern Oscillation

EOF = empirical orthogonal function

EEOF = extended empirical orthogonal function
GCM = general circulation model (or global climate model)
GA = genetic algorithm

GP = Gaussian process model

IC = information criterion

LP = linear projection

MAE = mean absolute error

MJO = Madden-Julian Oscillation

MLP = multi-layer perceptron neural network
MLR = multiple linear regression

MOS = model output statistics

MSE = mean square error

MSSA = multichannel singular spectrum analysis
NAO = North Atlantic Oscillation

NN = neural network

NLCCA = nonlinear canonical correlation analysis
NLPC = nonlinear principal component

NLPCA = nonlinear principal component analysis
NLSSA = nonlinear singular spectrum analysis
PC = principal component

PCA = principal component analysis

PNA = Pacific-North American teleconnection
POP = principal oscillation pattern

QBO = Quasi-Biennial Oscillation

RBF = radial basis function

RMSE = root mean square error

SSA = singular spectrum analysis

SLP = sea level pressure

SOM = self-organizing map

SST = sea surface temperature (sum of squares in Chapter 1)
SVD = singular value decomposition

SVM = support vector machine

SVR = support vector regression
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